

Using gas infrastructure for biomethane

How existing pipelines and storages enable the future use of biomethane in the EU

Webinar - 30 April 2025

Agenda

Co

Ç

ଞ୍^{ଦ୍}ଞ

<u></u>

1<u>e</u>

(§)

?

the to a P

Context and purpose

Executive Summary

Study assumptions

EU storage needs

Pipeline capacity needs

Cost competitiveness

Key messages and Q&A

Shaping Change

Biomethane is a rapidly growing source of domestically produced renewable energy

European biomethane production is growing strongly: 2020: 2.9 bcm → 2024: 6.4 bcm Investment pipeline: 6.3 bcm

Increasing **system-wide importance** as a dispatchable, storable form of renewable energy compatible with current infrastructure

This study investigates the **role of existing gas storages and pipelines in enabling biomethane scale up** into an important energy carrier of Europe's future

Executive summary

This study shows gas infrastructure is essential in unlocking biomethane's future

Gas demand will be **peakier** in 2040

Storage required to enable 100 bcm biomethane:183 TWh gas storage volume184 GW of withdrawal capacity

Pipelines bring dispersed biomethane supply to concentrated demands and storages

Modifications require investments of **€ 2.5 billion/year**, 40 times less than the electricity grid needs to 2040

Archetype 1: High Demand and Supply region A

Archetype 4: Net Supply region

Study assumptions

Best estimate of 2040 methane demand used with analysis of a 1-in-20-year cold event

Methane, 2040:

European grid operators scenario National Trends + (TYNDP 2024)

& Complementary analysis on the gas demand in the built environment for a 1-in-20 cold weather year

Biomethane demand split in 2040 and other key assumptions

Key assumptions

- Biomethane demand shared proportionally across all demands
- Biomethane production has a **slight seasonality**
- (Hybrid) heating of buildings and power generation need storage. Other demands are baseload
- New buildings do not use a gas connection. In 2040, of current gas connections, 25% no longer use gas, 25% use condensing boilers, 50% use hybrid heat pumps.
- Hybrid heat pump operation:

<-3°C	100% gas
-3°C to 3°C	30% gas and 70% electricity
> 3°C	100% electricity

Weather-dependent demand

*41% of gas on the grid is biomethane. (1,035 TWh / 2,514 TWh) (5% of biomethane from anaerobic digestion (36 TWh) does not enter the grid, it is assumed to be made into bio-LNG and directly consumed in trucking)

Flexible use of gas storages is crucial to the energy system of the future

Flexible use of gas storages is crucial to the energy system of the future

Biomethane use alone requires notable shares of current methane storage in 2040

Peak withdrawal

Largest hourly difference between demand and supply, when demand is greater than supply

184 GW peak withdrawal for biomethane 22% of 2024 capacity*

Biomethane supply and demand

2 Storage volume

Cumulative difference between supply and demand in the year

183 TWh storage volume needed for biomethane 16% of 2024 capacity*

* The 2024 storage volume and withdrawal capacity according to AGSI data (1,150 TWh and 20 TWh/day respectively). 20 TWh/day is simplified to 833 GW by dividing by 24 hours in the day.

Month

Using gas infrastructure for biomethane - Webinar 30 April 2025

9

Pipelines bridge the gap between distributed, baseline production and central, seasonal demand

Demand Supply Concentrated demand centres Weather-dependent demands Pipeline analyses used 4 archetype regions of 50 km radius, using data from real EU locations: **Archetype 4** Net supply region

Main findings: required pipeline capacity is largely determined by peak demand moments, and pipelines play a crucial role in bringing distributed production to required storages.

Pipeline needs

Pipeline needs

Archetype 1: Significant supply potential, exceeded by high demand with a seasonal pattern and high peaks

Pipeline needs

Archetype 2: Significant baseload biomethane

Pipeline needs

Archetype 3: Gas-fired electricity demand running at high full load hours, baseload demand from industry

Archetype 4: annual supply potential significantly surpasses annual demand

Net supply region

Supply and demand profiles- Archetype 4

Pipelines are essential across archetype regions to connect production, demand, and storage

Archetype 1: High Demand and Supply region

Archetype 2: Industrial gas demand focused region

Archetype 4: Net Supply region

Archetype 3: Electricity production focused region

Gas grids modifications for biomethane require only modest investments

Required **annual investments** in energy grids towards 2040

Gas grid	€ 2.5 billion	Investments for ~1,000 TWh_{th} by 2040 biomethane, including gas grid connections, reverse compression stations and DSO grid meshing
Electricity grid	€ 100 billion	Investments for ~4,000 TWh _e by 2040 €33 billion per year for the transmission grid ¹ and €67 billion per year for the distribution grid ²

Required gas grid infrastructures are already largely available: take advantage of the **cost efficiency of using the gas grid for enabling biomethane**. Key messages, Q&A

Pipelines and storages are key in unlocking the full energy system value of biomethane

Gas infrastructure bridges distributed, baseload biomethane production with concentrated, weather-dependent gas demand

2

An estimated **16% of current EU storage volume** (183 TWh) and **22% of withdrawal capacity** (184 GW) is required for biomethane in 2040

3

Gas demand profiles will become peakier in 2040, with large storage withdrawal capacities and pipeline capacities required to ensure demand can be met. 4

An interconnected European gas grid is important to enable large volumes of biomethane, with 8,000 km² archetype regions of varying levels of demand often not producing enough biomethane in the region to satisfy demand.

5

Gas grids are a cost effective method of enabling renewable energy, with annual investments of $\in 2.5$ billion required up to 2040, around 2.5% of the investments required for electricity grids across the same period, while enabling 1,000 TWh of clean energy use.

Thank you for your attention

Kees van der Leun Managing director

kees.vanderleun@commonfutures.com

+31 6 3448 9770

Common Futures Lange Viestraat 2b, 3511 BK Utrecht The Netherlands

+31 30 782 0975 info@commonfutures.com linkedin.com/company/commonfutures/

www.commonfutures.com

